Previous Blogs

May 26, 2020
Arm Doubles Down on AI for Mobile Devices

May 19, 2020
Microsoft Project Reunion Widens Windows 10 Opportunity to One Billion Devices

May 12, 2020
New Workplace Realities Highlight Opportunity for Cloud-Based Apps and Devices

May 5, 2020
HP’s New Chromebooks, Thin Clients and Gaming Machines Highlight PC Evolution

April 28, 2020
Google Anthos Extending Cloud Reach with Cisco, Amazon and Microsoft Connections

April 21, 2020
Remote Access Solutions Getting Extended and Expanded

April 14, 2020
Apple Google Contact Tracing Effort Raises Fascinating New Questions

April 7, 2020
Need for Multiple Video Platforms Becoming Apparent

March 31, 2020
Microsoft 365 Shift Demonstrates Evolution of Cloud-Based Services

March 24, 2020
The Time for Pragmatism in Tech is Now

March 17, 2020
The Value of Contingencies and Remote Collaboration

March 10, 2020
AMD Highlights Path to the Future

March 3, 2020
Coronavirus-Induced Pause Gives Tech Industry Opportunity to Reflect

February 25, 2020
Intel Focuses on 5G Infrastructure

February 18, 2020
Apple Coronavirus Warnings Highlight Complexities of Tech Supply Chains

February 11, 2020
Arm Brings AI and Machine Learning to IoT and the Edge

February 4, 2020
Nvidia Opens Next Chapter of Cloud Gaming

January 21, 2020
Cloud Workload Variations Highlight Diversity of Cloud Computing

January 14, 2020
New Research Shows It’s a Hybrid and Multi-Cloud World

January 7, 2020
It’s 2020 and PCs are Alive and Kicking

2019 Blogs

2018 Blogs

2017 Blogs

2016 Blogs

2015 Blogs

2014 Blogs

2013 Blogs


















TECHnalysis Research Blog

June 9, 2020
WiFi 6E Opens New Possibilities for Fast Wireless Connectivity

By Bob O'Donnell

One of the most obvious impacts of the COVID-19 pandemic is how reliant we have all become on connectivity, particularly wireless connectivity. For most of us, the combination of a fast broadband connection along with a solid WiFi wireless network inside our home has literally made the difference between being able to work, attend classes, and enjoy entertainment on a consistent, reliable basis or not being able to do so.

As a result, there’s significantly more attention being placed on connectivity overall these days, within all of our different devices. Of course, it doesn’t hurt that we’re also at the dawn of a new era of wireless connectivity, thanks to the recent launch of 5G networks and the growing availability of lower-cost 5G-capable devices. But, while 5G may currently be getting the lion’s share of attention, there have been some tremendously important developments happening in the world of WiFi as well.

In fact, just six weeks ago, the FCC gave official approval for WiFi to extend its reach to an enormous swath of new radio spectrum in the 6 GHz band here in the US. Specifically, the new WiFi 6E standard will have access to 1.2 GHz, or 1,200 MHz of radio spectrum, ranging from 5.9 GHz to 7.1 GHz (and incorporating all the 6 GHz frequencies in between, hence the 6 GHz references). Just to put that in perspective, even the widest connections for millimeter wave 5G—the fastest kind of 5G connection available—are limited to 800 MHz. In other words, the new WiFi connections have access to nearly 1.5 times the amount of frequencies to transmit on as the fastest 5G connections.

Theoretically, that means that WiFi 6E connection speeds could prove to be significantly faster than even the best that 5G has to offer. Plus, because of the basic laws of physics and signal propagation, WiFi 6E coverage can actually be wider than millimeter wave 5G. To be fair, total coverage is very dependent on the amount of power used for transmission—cellular transmission levels are typically several times stronger than WiFi—but in environments like office buildings, conference centers, as well as in our homes, it’s not unreasonable to expect that WiFi 6E will be faster than 5G, just as current 5 GHz WiFi (802.11a and its variants) are typically faster than 4G LTE signals.

One important clarification is that all of these benefits only extend to WiFi 6E—not WiFi 6, which is also relatively new. For WiFi 6, there are a number of improvements in the way signals are encoded and transmitted, all of which should decrease the congestion and reduce the power requirements for using WiFi. However, all those improvements still use the traditional 2.4 and 5 GHz frequency bands that WiFi has used for the last 20 years. The critical new addition for WiFi 6E is the 6 GHz frequency band.

To make sense of all this, you have to understand at least a little bit about radio frequency spectrum (whether you want to or not!). The bottom line is, the higher the frequency, the shorter the distance a wireless signal can travel and the lower the frequency, the farther it can travel. The analogy I like to use is to think of hearing a music concert from a far-away stadium. If you’re driving by a concert venue while a band is playing, you typically can hear a wide range of frequencies and can better make out what’s being played. The farther away you are, however, the more that the higher frequencies are harder to hear—all that’s left is the low-frequency rumble of bass frequencies, making it difficult to tell what song is being played. All radio frequency signals, including both cellular and WiFi, follow these basic rules of frequency and distance.

There is a critically important twist for data transmission, however, and that has to do with availability and width of channels for transmitting (and receiving) signals. The basic rule of thumb is the lower the frequency, the smaller the channel width and the higher the frequency, the wider the channel width. Data throughput and overall wireless connection speed is determined by the width of these channels. For 4G and what’s called low-band 5G (such as with T-Mobile’s 600 MHz 5G network), those channels can be as small as 5 MHz wide or up to 20 MHz. The mmWave frequencies for 5G, on the other hand, are 100 MHz wide and, in theory up to eight of them are available for a total of 800 MHz of bandwidth.

The beauty of WiFi 6E is that it supports up to 7 channels of 160 MHz, or a total of 1,120 MHz of bandwidth. (As a point of comparison, 5 GHz WiFi supports a maximum of two 160 MHz channels and 500 MHz overall, while 2.4 GHz WiFi only supports a maximum of three 20 MHz channels and 70 MHz overall.) In addition, WiFi 6E has these wide channels at a significantly lower frequency than used for millimeter wave (typically 24 GHz and up, although most US carriers are using 39 GHz), which explains why WiFi 6E can have broader coverage than mmWave. Finally, because 6 GHz spectrum will be unoccupied by other devices, the real-world speed should be even better. The lack of other traffic will enable much lower latency, or lag, times for devices on WiFi 6E networks.

Of course, to take advantage of WiFi 6E, you need to have both routers and devices that support that standard. To do that, you need to use chips that also support the standard (as well as live in a country that supports the full frequency range—right now the US is leading the way and the only country to support the full 1.2 GHz of new spectrum). Broadcom and Intel have both announced support for WiFi 6E, but the only company currently shipping chips for both types of devices is Qualcomm. For client devices like smartphones, PCs and others, the company offers the FastConnect 6700 and 6900, while for routers, the company has a new line of tri-band (that is, supporting 2.4 GHz, 5 GHz and 6 GHz) Networking Pro Series chips, including the Networking Pro 610, 810, 1210 and 1610, which support 6, 8, 12, and 16 streams, respectively, of WiFi 6E connectivity.

In addition, the new Networking Pro line supports what the company calls Qualcomm Max User Architecture and Multi-User Traffic Management, which enable up to 2,000 simultaneous client connections, thanks to advanced OFDMA (Orthogonal Frequency-Division Multiple Access) and 8-user MU-MIMO (Multi User—Multiple Input, Multiple Output) per channel. The new router-focused Networking Pro chips also support SON (Self-Organizing Networks), which makes them well suited for future versions of WiFi mesh routers.

In a way, the benefits of WiFi6E offer an interesting challenge for Qualcomm and other companies that make both 5G cellular and WiFi-focused chips and devices. For certain applications—notably public venues, certain office environments, etc.—the two technologies are likely to compete directly with one another, in which case the core component companies will essentially have to sell against themselves. Because of the increasingly complex range of wireless network architectures, different security requirements, business models and more, however, the likely truth is that both technologies will co-exist for some time to come. As a result, it makes better business sense to have offerings that support both than to simply pick a side.

The good news for those of us in the US is that we’re about to enjoy a significantly improved range of wireless networking options, thanks to both of these recent WiFi 6E enhancements, as well as the forthcoming auctions for mid-band (3.5 GHz) 5G spectrum. Despite the many other challenges we face, it’s looking to be a good year for wireless.

Here’s a link to the column: https://techpinions.com/wifi-6e-opens-new-possibilities-for-fast-wireless-connectivity/59745

Bob O’Donnell is the president and chief analyst of TECHnalysis Research, LLC a market research firm that provides strategic consulting and market research services to the technology industry and professional financial community. You can follow him on Twitter @bobodtech.

Podcasts
Leveraging more than 10 years of award-winning, professional radio experience, TECHnalysis Research participates in a video-based podcast called Everything Technology.
LEARN MORE
  Research Offerings
TECHnalysis Research offers a wide range of research deliverables that you can read about here.
READ MORE

 

b